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1 Executive Summary

Today’s computer systems are practically and fundamentally insecure. Our adversaries (criminals,
terrorists, rival states) repeatedly demonstrate that the security we deploy is not adequate to protect
the valuable information our systems contain. The roots of this problem are not a mystery: (1)
Our hardware is based on outdated design compromises and does not provide the right semantic
foundation, (2) the core of our software systems deliberately compromise sound security principles
for performance and time-to-market concerns, and (3) the computer system artifacts we build
are beyond our science and engineering to analyze and manage. Exponential growth of hardware
capacity, decrease in costs, and deployment of computer-mediated interactions have outstripped
the development of the sound engineering necessary to assure that we have control of our computer
systems and can manage the risks they entail.

While the situation today is dangerous, it does not have to remain that way. Some of the same
forces that exacerbated today’s problem (e.g. exponential growth in hardware capacity) enable
alternate solutions. By re-evaluating computer system design in light of today’s inexpensive silicon
hardware, today’s state-of-the-art in software design and assurance, and the criticality of today’s
information processing systems, we can engineer systems that we can analyze and trust.

In particular, if we are not beholden to legacy processor and operating system designs, we
can build a new hardware base that embraces good security principles (complete mediation, least
privilege, separation of privileges), does not compromise performance for security, does not depend
on large-scale, error-free software, and makes automated verification of critical security properties
tractable.

This report describes Trust-management, Intrusion-tolerance, Accountability, and Reconstitu-
tion Architecture (TTARA) a codesign of new hardware, operating system (OS), and application
infrastructure. The hardware base, the Security Tagged Architecture (STA), carries rich meta-
data throughout runtime to assure the semantics of the computation are preserved and supports
the security principles at the level of the hardware. This eliminates the traditional pressure to
build monolithic, over privileged security domains and allows the design of a Zero Kernel Operat-
ing System (ZKOS) embodying a radical decomposition of the operating system into many small
components each with limited privileges. It decreases the opportunity for compromise of each OS
component, makes it possible to formally verify each component, and assures containment so that
even if a component is compromised, it does not allow the system to be subverted.

A clean-slate redesign of the hardware and software foundation for computer systems is a large
task. In this short, limited scope effort our goal was to increase the confidence that such a task
is worth undertaking, reducing the risks and uncertainties that come with pursuing a new and
alternate path. As such, we concentrated on the areas of greatest concern (e.g. will this hardware
be too expensive or too slow?, can software be decomposed to eliminate single points of failure?).

In this effort, we have demonstrated:

e Complete mediation and metadata propagation at the primitive processor word-level requires
hardware investments that are tiny compared to today’s processors and need not impact cycle
times (Section 5.6).

e Separation of privileges can be applied at the level of primitive services. It appears increasingly
plausible that the operating system can be decomposed to avoid giving any entity complete
authority. We demonstrate this in key areas of memory management (Section 4.4), device
drivers (Section 4.5), scheduling (Section 4.3), and logging (Section 4.2.1).

e A set of patterns can be used to structure services in ways that support this secure decompo-



sition, simplify programming, and enable verification. We describe such a key design pattern
allowing strong decomposition and tight controls on information flow (Section 4.1).

The hardware enables application-level access control, operating at the level of the method
call, that need not be a burden to the programmer or compromise performance (Section 7.1).
In addition to access control, these facilities include, information flow tracking, provenance
maintenance and execution monitoring of data flow, control flow, and enforcement of the
input-output invariants of application methods.

We have further developed or refined a number of key ideas:

Tags and rule enforcement serve as hardware interlocks that can be used as a safety net around
software (Section 2.3). This has the effect of significantly reducing the size of the description
that must be assessed to validate security properties. This is a key part of making formal,
mechanical verification possible.

Metadata-driven hardware interlocks make it practical to take the security principles of Saltzer
and Schroeder [59] seriously (Section 2). Cycle-by-cycle enforcement of metadata rules allows
us to apply them at the most primitive level of object representation. This support in turn
makes it possible to apply them at the level of operating system services and applications,
realizing separation patterns like Clark-Wilson [16].

Based on our experience and developments, we recommend:

It is time to stop being complacent about the current hardware security base. Fully developing
a new architecture for deployment is a large effort that will take time and resources. It is time
to get started.

It is time to give up on the hypothesis that we can write large, error-free software systems.
Instead, we should develop and employ engineered systems that can achieve the necessary
trustworthiness despite the inevitable residual flaws in systems. The new hardware base
suggested above makes this possible. This means moving away from relying on monolithic
domain software systems as our security base. We must develop a new base system around
ideas like those in ZKOS (Section 4) and build the infrastructure (tools, libraries, languages)
to allow applications to be structured in this way as well.

It is time to stop relying on systems that exceed both human and machine understanding.
No single human can manage millions of lines of code, and no formal system can validate
unstructured code of this size and complexity. Formal verification is now powerful enough to
be used, but we must design and decompose our systems to meet the capabilities of verification.
The hardware, OS, and verification strategy must be designed together. Engineered codesign is
within the realm of state-of-the-art engineering, while analysis and assurance of unconstrained
hardware and software artifacts is not.



2 Overview of Technical Approach

TTARA involves a clean-slate redesign of the processor architecture along with a novel operating
system that has no single all privileged principal (i.e., no kernel). This eliminates a host of security
vulnerabilities, changing the tradeoffs associated with security and performance, and transforming
cyber conflict by shifting the advantage to the defenders. Our novel Security Tagged Architecture
for the TIARA processor

1. Enforces the semantics of the computation,
2. Allows fine-grained assignment of privileged operations,
3. Provides lightweight isolation of fine-grained memory regions.

Exploiting these unique capabilities, TIARA’s Zero Kernel Operating System decomposes soft-
ware components (including those normally federated into an operating system kernel) into small,
isolated, cooperating components that have minimal and distinct privileges and are mutually sus-
picious of each other. The resulting system thus embodies key principles identified by Saltzer and
Shroeder [59]:

o Complete mediation: Every access to every object must be checked for authority—the STA
hardware mediates both (a) the semantic validity of every operation and (b) the authority on
every instruction performed and every word of data.

e Least privilege: Each module is granted only the minimal privileges necessary to do its job—
this can be controlled to the level of individual privileged processor instructions on specific
data types and words of memory.

e Separation of privilege: Protection mechanisms should require that more than one condition
should be met before access is permitted. More generally modules should be distrustful of one
another and check one another as in [16]. This provides breach and error containment—rather
than a single breach giving complete access to unrelated systems, this makes it necessary to
compromise (or find errors in) a collection of components in order to subvert a system.

By spending a modest amount of, now cheap, additional hardware, we provide this dramatic
increase in security without sacrificing performance.

Before going deeper into the details of our technical approach, we first examine the root causes
of the broad classes of insecurities in today’s computer systems.

2.1 Software Insecurity Arises from The Lack of Enforced Semantics

All modern commercial operating systems are vulnerable. Figure 1 shows the rate at which attacks
have been growing [15] while [39] documents that, despite years of patching, the skill level required
to launch an attack has been decreasing due to accumulated tool development and software engi-
neering by the attacking community.

In a previous project, we collected a catalog of vulnerabilities in the Firefox browser!. As shown
in Figure 2, nearly all of the vulnerabilities arise from a failure of the underlying hardware and
software to enforce the semantics of object extent (e.g., buffer overflows), identity (e.g., storage

!Conducted as part of the DARPA Application Communities program



management bugs that lead to “dangling pointers”), and type (e.g., faulty method dispatch caused
by passing an integer to a routine expecting an object).?

[ Category [ Description [ N ]
r e \ Stack Overflow Ill formed data causes overwriting of stack frame 2
Yearly Dollar Loss (in millions) with data that is then branched to for execution
Array Access Reference to data outside bounds of array which 2
§§§§ $239.09 is then branched to for execution
%22" 18312 _$196.44 Heap Overflow Ill formed data causes overwriting of heap with | 11
data that is then branched to for execution
Dead Pointer Use of an invalid pointer to inject data that is 3
then branched to for execution
Trampoline Errors Passing of invalid data to method dispatch rou- 2
L 2001 2002 2003 2004 2005 2006 2007 tine causes branch to arbitrary position in mem-
. ory
Garbage Collection | Violation of memory conventions causes garbage | 13
Figure 1: The Number of Successful collector to create dead pointers

Attacks is Growing Rapidly
Figure 2: Vulnerabilities in Firefox

Current computing hardware and software systems are extremely vulnerable precisely because
they violate the principles cited above. Processors provide a single privilege mode (kernel) that
has complete authority over the system, memory systems provide isolation only by separating large
address spaces, it is expensive (thousands of cycles) to switch between address spaces, software
(including the operating system) is organized into large address spaces of code and data where any
weakness can be exploited to access or subvert the whole, and the hardware and system software
treat the memory as consisting of “raw seething bits” whose meaning is not understood or respected.

No element of the entire stack is responsible for enforcing over-arching conventions of memory
structuring or access control; nothing enforces the procedure call (and general stack use) abstrac-
tion/encapsulation. Outsiders may easily penetrate the system by exploiting vulnerabilities (e.g.
buffer overflows) arising from this lack of basic constraints. Attacks are not easily contained, whether
they originate from the clever outsider who penetrates the defenses or from the insider who exploits
existing privileges. Because there are no facilities for tracing the provenance of data, even when
an attack is detected, it is difficult if not impossible to tell which data are traceable to the attack
and what data may still be trusted. Because there is no tracing of accountability, insider attackers
have limited reason to fear discovery. Similarly, the lack of data provenance makes it difficult to
tell what information must be removed in order to downgrade the classification of a document.

Because there is so little inherent structure, the core of the operating system must be protected
from other parts of the OS and especially from application layer code. This is typically done by
creating a barrier between the kernel and the rest of the software, in which the kernel operates in a
separate address space as does each user process. However, the cost of the context switch between
kernel space and user space is normally quite expensive, as is the cost of interactions between
separate user processes. As a result the system winds up as a large monolithic kernel possessing
many disparate facilities all of them sharing unlimited privileges. In addition, this results in a
complex computational model with many mechanisms for interactions between user processes and
the OS.

In summary, in today’s systems:

2The systematic use of a type safe language (e.g., Java, Lisp, ML) could remove many of these vulnerabilities.
Ironically, Firefox is implemented in a type safe language (Javascript), but much of the runtime library for Javascript
is written in C from which it inherits vulnerabilities.



e Violation of intended semantics allows attackers to subvert the system (e.g. write beyond the
end of an object, overwrite the words on stack that should not be visible or addressable, treat
a data word as an indirection address or branch target, branch to and execute words that are
not instructions, perform a method dispatch on data that is not a class instance).

e Once one error is exploited, the attackers can take control of the entire system (e.g. access
to read or modify all memory, access to all privileged operations (e.g. rewrite page tables,
change permissions, access devices, install software)).

This state of affairs arises, in part, from system architectures and engineering trade-offs and a
mind-set grounded in the realities of an earlier period in which computer resources were relatively
scarce and it was expensive to provide enforcement mechanisms for the underlying semantics of the
computation. Hardware and system software treat memory as “raw seething bits,” provide few or
no mechanisms for checking types or bounds, and place the burden of storage management on the
programmer. This lack of the most basic semantic enforcement is then compounded by an equally
serious lack of tools for managing notions of locality, separation, privilege and access rights that are
necessary to limit the effects of a penetration.

Even as the VLSI (Very Large Scale Integration) revolution provided increasing resources, the
need to fit a whole processor (together with its caches, multiple pipelines, speculative execution
units, etc.) on a single die still dictated that chip real estate was expensive and that the most im-
portant design trade-offs were those that increased performance. In the context of scarce resources,
attempts to optimize the performance at all costs eclipsed the quest for a simple elegant architecture
that delivers safety and trustworthiness. With today’s abundant resources, we should now return
to the task of optimizing for these qualities.

Ultimately, modern processors provide only a single mechanism for privilege and separation
management: the user/kernel distinction managed by virtual memory hardware that provides page
level read/write/execute access controls on a per process basis. While this is valuable, it operates
at the wrong granularity, controlling access to individual pages of virtual memory rather than to
the semantically more meaningful unit of the individual object. Because the kernel is all privileged,
a penetrated kernel component can be used as a vehicle to compromise any other resource in the
system. Even processors and OS’es that provide for more levels of protection, such as multiple rings
[51, 65] still structure these in a strict hierarchy of increasing privilege; penetration to ring 0 leads
to unlimited privilege. There have been recent attempts to address this problem (e.g., SELinux
(Security Enhanced Linux) [29] and MILS (Multiple Independent Layers/Levels of Security) [1])
by providing OS mechanisms for enforcing mandatory access controls, but these mechanisms are
limited by the lack of fine-grained, non-hierarchical hardware support. Similarly, operating systems
provide “access control lists” (ACLs) and the like to control file permissions; these also operate at
a coarse grain and can be subverted by gaining “root access.”

Due to the large amount of state information that must be exchanged to safely hand off the pro-
cessor from one principal to another (e.g., special processor state, register file, Translation Lookaside
Buffer (TLB) content), context switches are relatively expensive (thousands of cycles) motivating
system programmers to move code into the kernel to limit the number of domain crossings. In
practice, the kernel becomes bloated and violates the principle of least privilege [59]. Each compo-
nent within the kernel enjoys unlimited privileges even though it typically needs only a very limited
subset of these privileges.?

3Much research has been conducted on alternatives, but in practice the overhead of context switching between



The lack of structure in the hardware and operating systems forces the system programmer
to trade-off security against performance. Performance concerns have generally trumped security
concerns.

The last 20 years have led to unprecedented improvements in chip density and system perfor-
mance, fueled mainly by Moore’s Law. During the same time, system and application software
have bloated, leading to unmanageable complexity, vulnerability to attack, rigidity and lack of ro-
bustness and accountability. Moore’s law has mainly been used to allow us to move applications to
increasingly smaller and cheaper platforms (e.g. mini-computers, workstations, personal computers
and personal data assistants). At the time that these platforms are introduced they are limited in
resources; thus, out our engineering designs have continued to be dominated by a sense of scarcity
in which there is no reasonable alternative to having all key elements of the computational envi-
ronment, from hardware through system software and middleware to application code regard the
world as consisting of unconstrained “raw seething bits”.

The design of today’s systems violated reasonable principles as a tradeoff to achieve acceptable
performance in an era of scarce hardware resources. However, decades of Moore’s Law hardware
scaling have delivered at least three orders of magnitude greater hardware capacity today than when
the architecture of these systems was selected. With a competent processor now small compared
to a silicon die (c.f. quad-core processors from Intel and AMD), we now live an era of abundant
hardware resources. These conventional systems are based on now obsolete technology assumptions
and “laws” for hardware/software design. Today’s multicore chips and massive field programmable
gate-arrays make clear that processor architects are no longer starved for real-estate. Rather they
are starved for good ideas about how to use the abundantly available on-chip resources. These
dramatic advances in hardware capabilities and the equally important progress in formal methods
over the past 3—4 decades present a qualitatively different tradeoff space.

This has led us to adopt TIARA’s key design principle that it makes sense to commit a
modest portion of these now abundant hardware resources to eliminating security vulnerabilities by
enforcing basic computational semantics and making isolation and privilege separation sufficiently
inexpensive that it can be used freely to provide strong separation (e.g. [1, 50]). A strong, secure
and robust computing base can be built without sacrificing performance by using some of these
newly available resources to build in far greater support for the semantics of the computation; in
particular, we argue that we can easily afford to carry metadata and access control rules into the
runtime of the system and that this information can make it clear what the computation is allowed
to do. Novel hardware techniques can make the performance cost of processing this metadata nearly
Zero.

2.2 Host Security Is Essential to Network Security

So far, we have been emphasizing the weaknesses of host hardware, operating systems and appli-
cation software. Nevertheless, most discussions on the national stage have centered on the term
“network security”. This is actually a somewhat vague and often misleading term, implying that the
problem lies in the network infrastructure (e.g. routers, DNS servers, TCP/IP protocols). However,
a careful consideration of what has been termed “network security” shows that a better term would
be security of networked computers. The vast majority of vulnerabilities that have been exploited
are not in the network infrastructure but rather in host software. Consider the Conficker worm,
one of the most serious recent network attacks, described in the quotation below [41] from the New

kernel mode and normal mode is so high that it places a high premium on moving functionality out of the kernel.



York Times.

In recent weeks a worm, a malicious software program, has swept through corporate,
educational and public computer networks around the world. Known as Conficker or
Downadup, it is spread by a recently discovered Microsoft Windows vulnerability, by
guessing network passwords and by hand-carried consumer gadgets like USB keys.

Experts say it is the worst infection since the Slammer worm exploded through the
Internet in January 2003, and it may have infected as many as nine million personal
computers around the world.

Worms like Conficker not only ricochet around the Internet at lightning speed, they
harness infected computers into unified systems called botnets, which can then accept
programming instructions from their clandestine masters. “If you're looking for a digital
Pearl Harbor, we now have the Japanese ships steaming toward us on the horizon,” said
Rick Wesson, chief executive of Support Intelligence, a computer security consulting
firm based in San Francisco.

At the time of this article, Conficker had more than five million computers under its control
including government, business and home computers in more than 200 countries, according to the
New York Times article.

As the article notes, the vulnerability exploited by Conficker was found in the Microsoft Windows
operating system, not the network infrastructure. The same is true for the “Slammer” worm
mentioned above and for many other large scale attacks. The SANS list of top vulnerabilities [61]
includes the following:

e Client-side Vulnerabilities in:
— Web Browsers
— Office Software
— Email Clients
— Media Players
e Server-side Vulnerabilities in:
— Web Applications
— Windows Services
— Unix and Mac OS Services
— Backup Software
— Anti-virus Software
— Management Servers
— Database Software
e Security Policy and Personnel:
— Excessive User Rights and Unauthorized Devices
— Phishing/Spear Phishing
— Unencrypted Laptops and Removable Media
e Application Abuse:
— Instant Messaging
— Peer-to-Peer Programs
e Network Devices:
— VoIP Servers and Phones
e Zero Day Attacks:



— Zero Day Attacks

From this it is clear that the vast bulk of the problems are in host software, followed by operations
practices; only a very small fraction of vulnerabilities lie in network devices, services and protocols.
The significance of the network rather lies in the fact that:

e The network provides an attacker with remote (and often anonymous) access to vulnerable
hosts.

e The network amplifies host vulnerabilities:

— Insecure hosts are subverted to work for the attacker and serve as a platform for attacking
other hosts.

— Even within a fire-walled intranet, by subverting a single machine the attacker establishes
a beachhead for controlling the entire intranet.

— By allowing ensembles of compromised hosts to act in concert to recruit and subvert
other machines anywhere on the Internet, the network becomes the vehicle for enabling
National-scale Zero-Day attacks.

The existence of exploitable host vulnerabilities in machines connected by the Internet allows
attacks of previously unimagined consequences. The key enabler is the vulnerabilities in host
software, not the vulnerabilities in the network infrastructure, which mearly acts as an amplifier.

Thus, the core technical challenge is to fix the vulnerabilities in host software and to make it
much more difficult to use whatever vulnerabilities remain as the foothold in national zero-day
attacks. The goal of the TTARA project is precisely to attack this head-on by providing hardware
tools that allow fundamentally new ways of structuring host software. The new structures are much
more likely to be constructed without vulnerabilities, to be analyzable and verifiable, and to require
multiple independent penetrations by an attacker in order to gain control.

2.3 Mitigating Risks with Hardware Interlocks

Consider the problems that might arise in trying to build a web-based e-commerce system in which
purchases require customer payment and shipping data. Today’s common practice is to build
systems from reusable software components, where the components may be legacy software, out-
sourced, freeware, or purchased libraries. Since such servers are extremely performance-sensitive,
many components might be combined in a single address space, losing whatever protections are
inherent in the virtual address protection mechanisms of the processor. Hence, an error (e.g., the
sadly still-common buffer overflow) in any component creates opportunities for an attacker to gather
customer credit card numbers, either directly or via code injected to ‘bootstrap’ more sophisticated
exploits. Injected code can also serve as a beachhead from which to mount attacks on the server
operating system, which, like the web server, is a large and complex software system composed from
many pieces from various sources.

Securing a code base of this scale would require capabilities far beyond the state of the art in
either software engineering or formal methods. The bottom line problem is that the hardware’s
protection mechanisms and the software engineering needs are mismatched, and the
complexity of the aggregate of the two inhibits use of even the most aggressive of today’s formal
methodologies. Is the solution to be found in the software, verification, or hardware domain?
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Figure 3: Hardware Isolation for Internet Merchant

As a thought experiment (following [56]), consider the stronger protections that a hardware
architect might propose. As an example, with code and data separated as shown in Figure 3(a) and
certain assumptions (e.g., that code is compiled to machine code and no run-time code generation),
we can use specialized memory technologies to prohibit inappropriate data transfers. For example,
to prevent writing code, we can position an I-cache (Instruction cache) in front of a flash memory
writable only via physical access, or we can segregate memory and processing for orders taken by our
web merchant with a one-way FIFO (First In First Out) path that prevents data from propagating
to the Internet (Figure 3(b)).

In this hardware isolation model, we have “spent” hardware mechanisms to achieve a consider-
able gain in security. We can easily reason about information flow at a coarse-grained level in such
a system, and, without analyzing any software, we can begin to make guarantees about what flows
are and are not possible.

However, this solution has some unattractive features, in addition to the substantial additional
hardware. First, it is very problem specific (i.e., it may not be useful for any application beyond
the web merchant’s). Second, it has relied on limiting the capabilities of the software. What is
instead desired is a general purpose, configurable coupling between software and hardware that
permits fine-grained analysis and hardware protection and that enforces the desired information
flow architecture at a very fine-grained (e.g., memory reference) level.*

A tagged processor can provide isolation without compromising flexibility. A proces-
sor that carries metadata encoding types and compartments with every word and that uses a Tagged
Memory Unit (TMU) to enforce access rules on each cycle can be programmed to enforce the same
type of strong flow restrictions as the special-purpose hardware solution just described. Each com-
partment emulates a separate memory, while the access rules model the constraints on mutability
of the data in that memory and the limitations on communications channels with other memories.
The tagged memory processor is both cheaper and more flexible than an application-specific design
with multiple special-purpose memories; it can be configured to support any application needs. The
software architecture and its intended isolation can be enforced directly with hardware, operating
in a single address space and consequently avoiding context switches.

This assures that information flow questions are decidable and reduces the size
of the description we must scrutinize and rely upon for correctness. That is, security
now depends on the rules we enforce on the flow of information in the system. The rule sets are
not Turing Complete making all the questions we ask about them decidable, whereas questions

4Rushby’s original paper [56] led in the direction of separation kernels [1]. STA can be see as a hardware-based
separation kernel.



about software are undecidable in the general case. This ruleset is also very small compared to the
size of the code in the system. In a conventional, software-only system, security depends on the
correctness of all the software. Here, we factor out the information-flow specification into a much
smaller description that is tractably verifiable independent of the entire body of software. In fact,
the software can have bugs, and the rule specification prevents those bugs from compromising the
overall security properties of the system.

To ground the reduction in size, a typical system will need 1-10 rules to specify how data flows
over a link between two connected processes, and a process may exchange data with 5-10 other
processes. This means, at most 100 rules (and more likely 10) govern a single process. This should
be contrasted with the tens of thousands of lines of code that may be required to describe the
computational task for the process.

2.4 Overview of The TTARA Architecture

TTARA starts with the premise that we can use some of today’s abundant computational resources
to fix critical security problems using a combination of hardware, system software, middleware and
programming language technology. TIARA is less vulnerable, more tolerant of intrusions, capable
of recovery from attacks, and accountable for its actions. TTARA’s design imposes minimal impact
on overall system performance.

The TTIARA architecture achieves these
goals through the judicious use of a mod- Register File
est amount of extra, but general pur-

pose, hardware (the Tag Management Unit
or TMU shown in figure 4) that is ded-

Operand 1
-~

Result Data

icated to tracking the security context Operand 2

of data at a very fine grained level, to

enforcing access control policies, and to Tag 1 _
constructing a coherent object-oriented ag e ag Izzf,i:?mh Address
model of memory. TIARA’s TMU runs r :ncipal S—

in parallel with the main data-paths of ResutTag  *—

the system and operates on a set of extra

bits tagging each word with data-type, Figure 4: The TIARA Tagged Data Path
bounds, and security context informa-

tion. Operations that violate the intended invariants of the system are trapped, while normal
results are tagged with information derived from the tags of the input operands. Because of the
critical role of tags in enforcing security properties, we call TIARA a Security Tagged Architecture.

Each word in TTARA’s memory as well as the contents of each processor register is tagged with a
set of extra bits that encode its data-type and its security context. Even the Program Counter (PC)
is tagged, allowing the PC to encode the security context of any data that was used in conditional
branch instructions. Each process has associated with it a “Principal” representing the current
privileges of that process; a processor register holds this value while the process is active.

While TTARA’s main data path executes an instruction, the TMU examines the principal reg-
ister, the tags of both operands, the tag of the PC and the instruction. If executing the instruction
would violate any access control policy, then the tag unit causes the process to branch to a “security
violation” trap handler; otherwise, the tag unit computes the tag of the result.
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Because all words are tagged with their data type, differences between instructions, immediate
data (e.g. numbers), and object references are manifest at run-time. TTARA regards all data as
objects; in particular, all non-immediate data is accessed through object references that encode
both the location and size of the object. All accesses to memory are mediated by object references
and all accesses perform bounds-checks in parallel with the load or store, trapping out of bounds
references before they take effect.

2.5 TIARA System Layers

The TIARA hardware supports a series of software layers that provide for the enforcement of
structuring constraints, access controls and data accountability. The structure of the overall system
is shown in Figure 5.

The role of the TIARA hardware is to guarantee integrity of the basic memory structuring
conventions: All accesses to memory are mediated by object references and are bounds-checked (so
there is no ability to overwrite arbitrary areas of memory); no object to which there are existing
references can be deallocated (i.e. there are no dangling pointers). In addition, the hardware is
responsible for implementing “secure information flow” policies and these policies are enforced at
the granularity of the individual word. Each word has both a data-type tag and a security context
tag. These later tags form a lattice [22] and the hardware enforces flow policies with respect to this
lattice, tagging every result with its appropriate security context.

This establishes a firm and non-bypassable base upon which

several layers of software are constructed; each layer provides Application Substrate: |z »
increasing guarantees and greater accountability. The first of the Algpa":;tiX‘CDé’;au'\:ﬁnaagﬁE;r_“ %:%
software layers establishes a consistent object-oriented level of Provenance Tracking % %
computing while higher layers establish non-bypassable wrappers, Plan Level: 3 >
access controls, and data provenance tracking. TIARA includes Self Monitoring and Recovery
a novel “plan level” of computing in which code is executed in Access Control:
parallel with an abstract model (or executable specification) of Polley Erffomemem w
the system that checks whether the code behaves as intended. Mﬁfggﬂfﬂ;gfxl: g—

The first of the software layers is the Objection Abstraction Operating System: 3,
Layer in which memory is structured into distinct objects, each Hardware Management, S
characterized by identity, type and extent. This layer erects a Hérdware Leve POI{CY §

. . .. Object Abstraction: ®

computational model that consists solely of the application of Structured Memory,
a function to a set of objects. TIARA functions are generic Method Dispatch
functions[33], fully polymorphic functions whose implementation Hardware:
is provided by one or more methods. Function invocation in- Tags Processing

volves dispatching to a specific method based on the types of the

operands. The fields of an object may be accessed only by invok-
ing a method on that object and these are subject to hardware
enforced access controls. This layer also erects a class system in which every object is a member of
some class; classes themselves, being objects, are members of a meta-class. The main operations
of the object system are described by methods on meta-classes and these are the only means for
manipulating the internals of classes.

The Operating System Layer controls the hardware and manages the core resources of the TTARA
architecture. In spite of the name, TIARA does not have an operating system in the classical sense
of a distinguished component, executing in a separate context and possessing unlimited privileges.

Figure 5: TIARA Layers
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Rather the various functions of a traditional operating system (e.g. the scheduler, memory manager,
etc.) are implemented by distinct objects with limited scope of capability and privilege. All objects
live within a single flat address space; there is no need to separate kernel space from user space since
all objects are inherently protected from one another. Each critical component of the operating
system layer (e.g. the scheduler, the virtual memory manager, device drivers) has a limited set of
responsibilities and an equally limited set of privileges. These components interact according to a
set of system-wide global invariants. Thus, TIARA protects its critical resources by adhering to
strict enforcement of the object abstraction and to the principle of least privilege. Objects interact
using a single mechanism: the function call and all function calls are checked for compliance with
access control policies.

The Meta-Object Layer is concerned with the imposition of non-bypassable wrappers that are
used to provision redundant copies of data, to monitor execution, to track dependencies and to
impose access controls. Wrappers are an inherent part of our object model, which is derived from
the Meta-Object Protocol (MOP) of Common Lisp Object System (CLOS) [33]. A wrapper is simply
a distinguished type of method that is combined with other methods in such a way that the wrapper
gets control before other methods, allowing it to control whether the other methods are invoked
and with what arguments. In addition, the wrapper method gains control after the other methods
execute, allowing it to capture and/or modify the returned results.

The Access Control Layer is capable of supporting a variety of role-based (and other) access
control models using capabilities provided by the lower layers. As mentioned earlier, TTARA’s
hardware guarantees that every datum is tagged with both its data-type and its security context;
the processor checks every instruction to make sure that the executing process has the privileges
necessary to execute that instruction on data from the security contexts of the operands.

The access control layer supplements these hardware checks using access control wrappers that
check whether it is legitimate for the executing process to invoke the indicated function on the
operands. It does this by checking the security context and data-type parts of the operands tags.
Access control wrappers are imposed using functions provided within the MOP. Since these MOP
entry points are themselves just normal functions, access control wrappers may also be imposed on
them, allowing us to use the normal access control mechanisms to control who is allowed to impose
a wrapper.

Access control wrappers typically are generated from a more abstract description of an access
control policy written in an Access Control Language. It was not a major part of our agenda
to develop such a language, however we have created a simple one to drive our early work. We
anticipate that TTARA can support a broad range of access control policies.

The Plan Layer uses system-wide models of the intended behavior to enforce constraints on
control and data flows, and to check intended invariant conditions. If the behavior of the system
does not correspond to the intended behavior predicted by the system model, then execution is
aborted and the dependency records are used to diagnose the cause of misbehavior, to identify data
that should not be trusted and to identify what individuals might have been responsible for the
failure.

The Data Accountability layer is responsible for tracking the provenance of data as directed by
the plan layer. Part of this is accomplished by the TIARA hardware which tags all data with its
security context. Data Accountability wrappers are used to capture the inputs and outputs of all
functions of interest and to build dependency records linking the outputs to the inputs and to the
invoked function. In addition, data accountability wrappers are interposed around all HCI (Human
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Computer Interaction) input and output operations. Output functions track what data has been
exposed to which users while wrappers around input routines track which users have contributed
data to the computational process.

The Application Substrate uses the features of all the lower layers to provide a platform for
applications that rely on accountable information flow. It provides a “truth-maintenance” capability
that allows conclusions in application documents to be removed if the raw data or computations
that led to them are no longer trusted; it also provides a Bayesian reasoning substrate that assesses
the trust that should be placed in conclusions given the trustworthiness of the inputs (e.g. sensor
data, human judgment, computational tools) to the intelligence analysis process. This substrate
also provides tools that hide sections of a document whose security context requires more privileges
than are possessed by the audience.

The end result is that application systems are continually checked at runtime to see if they behave
as intended, violations of intended invariants are detected and prevented and the provenance of all
data is made manifest. Thus, even when attacks succeed, the system knows what data is trustable
and what data is suspect. In addition, all data can be traced back to the computational processes,
raw data and individuals from which the data was derived. Bayesian inference techniques are used to
rate the reliability of conclusions given the trust accorded to the contributing inputs, computational
processes and human analysts. Finally since every datum is tagged with its security context, it is
easy to identify sensitive data that must be shielded from users without adequate privileges.

These techniques derive from research over the last decade in the Massachusetts Institute of
Technology ARIES and AWDRAT projects [14, 13, 67]. In the rest of this report we present more
of the details of each of these software layers as well as a description of the proposed core TTARA
hardware.

In the TTARA design, we try to unify these various capabilities and to use the lower level facilities
to guarantee that facilities higher in the stack are not bypassable. We use TIARA’s STA hardware
to guarantee that no attacker can modify or subvert ZKOS and we use both STA and ZKOS to
guarantee the non-bypassability of the access controls, reference monitors, and provenance tracking
facilities provided at the application layer.

2.6 TIARA Hardware

At a high level, our goal is to track information flows in order to understand the provenance of
significant data, to provide confinement [36] and to guarantee that all information flow and access
control policies are adhered to. The TIARA hardware contributes to this goal by systematically
tracking the security context of all data in the machine, guaranteeing that no process can gain
access to data for which it lacks adequate privileges.

The key TIARA hardware structure is shown conceptually in figure 4. The upper half of the
picture might be virtually any conventional processor design; it fetches operands from a register file,
combines them through an ALU (Arithmetic Logic Unit) in accordance with the current instruction
and then writes the results back into the register file. The lower half is the Tag Management Unit;
this fetches the tags of the operands from the register file, the identifier of the processes’s current
principal from the principal register, the tag of the Program Counter and the current instruction
and produces a new tag that that is written back into the tag section of the register file as well as a
new tag for the Program Counter. The role of this TMU is to enforce basic structuring conventions,
data type consistency and compliance with access control policies while imposing minimal delays.

In addition to the TMU, TIARA provides a few other novel pieces of hardware: A Bounds
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Checking Unit (essentially an adder) to guarantee that accesses to objects are within range; and a
specialized hardware stack that help in managing the security context of the program counter. We
will next describe these, starting with the implementation of the TMU.

2.7 The Object Abstraction

The hardware features outlined above are the primitive building blocks for creating a software
abstraction layer in which 1) All of memory is regarded as consisting of objects with definite type,
extent and identity and 2) All operations performed on these objects are semantically meaningful
and consistent with the object types. Thus, raw pointers to arbitrary memory locations are replaced
by “object references”. The use of arbitrary operations on raw data is replaced by bounds and type-
checked semantic operations on structured objects. In particular, raw pointer arithmetic, buffer
overflows and the storing of data in arbitrary locations are impossible. This layer is referred to as
the Object Abstraction and it represents the base upon which a variety of software object models
(e.g. those of C++, Java, C#, Python, Aspect-J, or Common Lisp) may be constructed.

We will employ an object model that is a generalization of these specific object models and that
draws heavily on the ideas in CLOS [33] and Aspect-J [34]. The model provides for a class lattice
(i.e. multiple inheritance) and for multi-argument method dispatch (as is done in CLOS). This
supports a view that combines functional and object oriented programming: A function dispatches
to a method that is consistent with the types of its operands; if there are no applicable methods
then the application of the function to its arguments is illegal and traps. The Hash Execution
(HEX) unit, described later, efficiently supports method dispatch.

2.8 The System Software Layer

The System Software Layer is responsible for implementing the functionality provided by a conven-
tional operating system such as interrupt handlers, device drivers, trap handlers, management of
the physical hardware, resource allocation and scheduling, virtual memory management, persistent
storage, authorization and authentication.

In TTARA, each of these is implemented as an individual object with internal storage that
is isolated from other components of the operating system layer and that has extremely limited
privileges. For example, the scheduler maintains internal information about processor usage and
about the priority levels of both system and user processes; this information is inaccessible to other
system software components. Conversely, the scheduler has no privileges to access the internals of
processes; it cannot for example, read or modify the internal data structures of a process. Device
drivers, in particular have extremely limited access rights; they are given a standard object reference
with base and bounds that describes the block of memory that is be read or written. They have
no other ability to access memory and cannot overwrite storage at random. A major goal of our
design efforts will be to determine precisely what module boundaries make sense and what security
contexts are needed to enforce the contexts.

2.9 The Wrapper and Meta Control Layer

In addition to these basic features, our object model provides for a “Meta Object Protocol” in which
classes are regarded as instances of other classes whose methods implement the basic operations
of the base classes (e.g. method dispatch, object creation). This layer also provides for method
combination (as in CLOS [33] and Aspect-J [34]); in particular this allows for “wrapper methods” to
be applied to base methods to implement the concerns of a distinct aspect such as access control or
data provenance tracing. Wrapper methods execute before and after the base method and control
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whether the base method is executed at all. This allows us to construct a series of more abstract
software layers that provide for access control, flow monitoring and logging and for self-checking
and diagnosis.

Since classes are themselves objects, their behavior is described by another set of classes, com-
monly termed “Meta-Classes”. Methods on these classes control how normal classes behave; in
particular they describe how method combination and method dispatch is implemented. This al-
lows us to distinguish different classes of wrappers, such as those used by TIARA internally to
implement access and flow controls, from normal user level wrappers. In addition, the meta-level
allows us to control who is allowed to impose such wrappers, making the imposition of security-
oriented wrappers non-bypassable.

Wrappers are available as part of the toolkit of the application programmer; however, there
are a distinguished set of meta-level wrappers that are imposed by system software to implement
access controls and to track data provenance. Such wrappers are non-bypassable and access controls
imposed at the meta-object level restrict the use of such wrappers to processes executing with special
privileges. Since these access controls are ultimately enforced by the hardware, this allows us to
create a very strong base for security and provenance management.

2.10 The Access Control Layer

Using the object abstraction as a base, we can provide for the efficient enforcement of a variety of
access control policies. The outline of this is as follows: We associate with each process a stack of
“Principals”, where a principal represents the privileges extended to the current process; the process
may dynamically (and temporarily) assume a new principal, but it must authenticate itself to do
so. All operations on data are ultimately performed by dispatching to a method based on the data
type and security contexts of the operands. TIARA extends this notion to include the principal
in the method dispatch. Thus a method is dispatched to only if the privileges of the Principal are
consistent with the data types of the operands; otherwise an illegal operation is signaled. Role-based
access control systems (and a variety of other access control schemes) are easily mapped into this
framework: The role is encoded in the Principal; The type hierarchy is encoded in the object-type
lattice; The operation type is encoded in the method-name. In our model, the MOP and its use
of meta-classes and wrapper methods allows us to simultaneously implement a variety of access
control policies. Furthermore, these are all implemented through method dispatching and this is
efficiently supported by the HEX hardware.

In many ways, TIARA is similar to a capability architecture [47, 37, 32, 66]. However there is
an important distinction. Capability systems mix together an object reference with the set of access
rights; thus, when a process transmits a capability from one component to another, it transmits not
only knowledge of the referenced component, but also a set of rights to access that component in
particular ways. This leads to problems with managing revocation of privileges and with controlling
the amount of privilege that is delegated. Although there are ways of dealing with these issues in
appropriately structured object oriented capability systems [42], in our view these impose unneeded
complexity.

TIARA separates knowledge of an object (which is carried in a normal object reference) from
rights to access that object (which is represented in the Principal Register of a process). One can
think of this in terms of Lampson’s notion of an access control matrix [35], which uses one dimension
to represent Principals and the other to represent Objects. Each cell of the matrix represents the
access rights of a principal and to an object. Capability systems cut this matrix up into columns
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while Access-control lists cut it up into rows. TIARA, instead, operates on the matrix directly,
since it represents the principal separately from the objects that are being accessed.

2.11 The Plan Layer

The Plan Layer is responsible for monitoring whether a process is behaving as intended; the design of
this layer derives from our work on the AWDRAT [67] system within the Defense Advanced Research
Projects Agency (DARPA) Self-Regenerative Systems (SRS) program. This layer is driven by an
abstract model, or Plan, of the intended computation; this consists of a hierarchical block diagram of
the computation, annotated with data- and control-flow links between the components and Pre- and
Post-conditions around each component. This abstract description drives the synthesis of wrapper
methods that are used to gather information on entry and exit from the relevant computational
components and to check that this information is consistent with the constraints of the Plan. The
previous layers check that every operation is permitted and semantically meaningful within its local
context; this layer checks that the global constraints of the computation are respected. In addition,
the plan layer is responsible for capturing and provisioning redundant copies of data to support
recovery from attacks. This backup data is used by the plan layer, together with its model of the
computational process, to facilitate the reconstitution of a consistent state of the computation from
which the computation may proceed.

2.12 The Data Provenance Layer

The Object layer guarantees that only semantically sensible operations may be performed; the
Access Control layer strengthens the guarantee to rule out operations that are inconsistent with
access policies.

The data provenance layer provides for accountability by tracking how the current state of each
object is dependent on the state of other objects. The HEX hardware performs the most basic part
of this operation since it performs fine-grained “tainting” of data (e.g. it maintains the security
context for each individual word). At a higher level, the data provenance layer builds links that
connect an object to those other objects that were used in computing its current state. These links
represent dependencies and the dependencies form a network similar to those of “Truth Maintenance
Systems” (TMS) and Bayesian networks used in Artificial Intelligence.

These capabilities, like those of the Access Control layer, are implemented by wrapper methods
that work in tandem with the hardware’s HEX units.

2.13 The Application Substrate Level

The Application substrate level provides a variety of services that are supported by the dependency
network built by the data provenance layer. As mentioned in section 2.12 this dependency network
is similar to the data structures of a TMS. One of the key capabilities provided by a TMS is
“assumption retraction” which invalidates all statements that depend on an abandoned assumption.
The equivalent operation for the application substrate layer is performed when some datum is
identified as having been corrupted by an attack; at this point the Data Provenance dependencies
are traced to identify all data whose current state was derived from the corrupted datum and to
mark these data as untrusted.

The dependency network is also similar to the data structures of Bayesian networks and it is
used for probabilistic reasoning. The Data Provenance layer dependency network can also be used
to support such reasoning: Each raw observation, whether it comes from sensor data or from human
sources, is accorded a degree of trust, represented as a probability. For each step in the processing
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of intelligence data, the data provenance layer builds a link in its dependency network which can be
interpreted as stating how the trustworthiness of the conclusion depends on the trustworthiness of
the inputs as well as on the reliability of the interpretation step itself. Bayesian inference algorithms
in the application substrate layer estimate the trustworthiness of the final conclusions (including
competing conclusions) and update these estimates when the estimated reliability of any input
changes.
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3 Related Work

Many of the base observations here (e.g., the vulnerability of large kernels, desirability of formally
establishing OS, need to align hardware, OS semantics, and verification) have a long history. The
Multics Kernel Project identified how the Multics kernel might be reduced to tens of thousands of
lines of code with the promise that future kernels might be formally validated [64]. PSOS developed
the design for a provably secure operating system that also exploited tagged data [25, 49]. LOCK
targeted a small security kernel with a hardware co-processor to enforce security and judicious use
of formal validation [62, 69, 63]. These systems made the necessary compromises to coarse-grained
control (e.g., pages and files), to the hardware of the day, and to the available verification technology.

The trend to microkernels (e.g., [27]) embraced the idea that it was beneficial to reduce the ker-
nel, separating out services as separate processes isolated from each other. Performance concerns
with commodity hardware kept the separate components relatively large. Even with this conces-
sion, performance cost limited adoption. More recently Tanenbaum [72] notes the security virtues
of microkernels and suggests the modern importance of security makes it worthwhile to sacrifice
performance for security.

The need for strong isolation has been recognized for embedded systems, leading to work on
separation kernels (including the work on MILS [56, 1, 50, 21]) which has largely focused on software
isolation, with the usual performance considerations discouraging fine-grained compartmentaliza-
tion. Our work can be seen as allowing these philosophies to be carried to the extreme by supporting
them with appropriate fine-grained hardware isolation.

Bell and LaPadula defined a formal security model for Mandatory-Access Control (MAC), in-
cluding details of the implementation for Multics [10]. Bell notes that hardware capability and
performance limitations of the machines forced their model and rules to only work with coarse-
grain entities (e.g., files), outlawing many finer-grained interactions which would be consistent with
conceptual policy intent, but could not properly be enforced by the hardware of the day [11].
SELinux [29] shows how MAC could be added to Linux, but lacks the more formal basis of MAC
in Multics and suffers from many of the underlying weaknesses of the Unix OS.

Security properties concerning information flow have been typically formalized as noninterfer-
ence: see [57] for a survey of the research on noninterference and [48] for a Java-based programming
language with a type system that supports information flow control based on noninterference. In
practice, the nonintereference requirement is too strong a requirement; see [58] for a survey of
methods for defining such relaxations via declassification. Program analysis for (variants of) non-
interference has been examined in literature. The approaches that have been considered include
slicing [70] or using a logic for information flow [3]. Our metadata tags can carry taint information;
this allows dynamic tainting in cases where analysis cannot establish static taint labels and sup-
ports the dynamic taint propagation with hardware so there is no added, runtime overhead for this
dynamic taint propagation.

Previous machines have employed tagged data, including Burroughs-Unisys MCP/AS [52, 30],
the Intel 432 [53, 31], multiple generations of the Symbolics LISP Machine [45, 6], IBM’s Sys-
tem 38 [38] and the Cambridge CAP machine [76]. Many of these machines employed a hard-
ware/software architecture whereby access control to objects required possession of a hardware
capability to perform the controlled action. A main advantage of the capability concept is in en-
forcing least-privilege, since capability-granting is analogous to “need to know.”

The Burroughs machine used tags for security, but security guarantees required that all code
be written in a high-level language and compiled by their compiler, a requirement that was not
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otherwise enforced by the system. System 38 gained considerable protection benefits from a single
tag bit. The LISP Machine used tagging primarily for efficient support of LISP and graceful
detection and handling of runtime errors (e.g. unintentionally treating a floating-point value as a
pointer); this use does offer a practical improvement to security, minimizing the likelihood a latent
programming bug can be exploited to create a breach, although security and isolation were not
design goals of the LISP Machine processors or OS. In contrast, our STA design exploits the lower
relative cost of hardware today to support a large metadata space and an implementation capable
of providing rigorous runtime security checking for all programs. This enables a new operating
system model, ZKOS, and close coupling with modern formal methods to reallocate roles in the
design tradespace.

Recently, several efforts have begun to explore the use of metadata tags for security (e.g.,
(77,71, 73, 17, 19, 4, 75, 78, 23]). These results illustrate the promise of the technique but generally
lack the grounding to make strong security guarantees. Prior work does not use the hardware tags
to enable OS redesign, does not formally ground the protection provided by the tagging, and does
not exploit the metadata tagging to enable software verification. We take these ideas further by
systematically identifying the semantic invariants, carefully designing the tagging along with the OS
and verification strategy [40, 20]. Prior work solutions for cooperation of compilers and hardware
support (e.g., [73]) and efficient microarchitectures that reduce tag memory overhead (e.g., [23, 77])
can be useful in minimizing the overhead required for an implementation.

Virtualization and hypervisors [18, 55, 8] have received renewed attention as a protection solu-
tion, in addition to their use for resource-sharing. Computations are protected from each other at
a very coarse granularity (the Virtual Machine, or VM) by a complex software system, which may
or may not be OS-aware. As their “unit” of protection is the VM image, such systems alone do not
offer the rich fine-grained control and natural ties to formal methods that our approach provides.

19



4 Zero Kernel Operating Systems (ZKOS)

In the rest of this document we will examine the details of the TTARA design, aggregating these
into three major sections: The first will be concerned with system software, the second with the
hardware architecture and the third with application infrastructure. It is difficult to segregate the
discussion into these three areas because the overall project involves a co-design of all three areas.

Our goal is to design a system in which we can place high trust; ultimately we would like to
formally prove that this trust is warranted. As we argued in Section 2.1, the source of the problem
is that our systems do not maintain enough metadata to actively enforce the intended semantics of
the computation. In the TIARA design, however, we have the opportunity to add features to the
STA hardware architecture that make the intended semantics manifest and therefore make it easier
to prove that the overall system behaves as intended.

As we noted in Section 2, Saltzer and Shroeder [59] identified several key principles for system
design, including:

o Complete mediation: Every access to every object must be checked for authority.
o Least privilege: Fach module is granted only the minimal privileges necessary to do its job.

e Separation of privilege: Protection mechanisms should require that more than one condition
should be met before access is permitted.

The rest of this document will present an examination of the ways in which a co-design of
the system software, the hardware architecture and the application infrastructure can meet these
criteria. We begin our discussion with the operating system. Then we will look at the details of the
hardware design and then finally we will turn to how the application infrastructure can capitalize
on the facilities provided by both the hardware and system software.

We begin with the ZKOS operating system, because the construction of an operating system
embodying these three principles will motivate most of the hardware architecture design. This will
include both features of very general applicability (e.g. compartments, principals, access rules) as
well as hardware features designed to solve specific problems. As we will see in Section 4.4, global
garbage collection presents unique problems for a system based on the notion of least privilege;
however, these problems can be addressed by provisioning new hardware data types, special purpose
compartments and novel instructions.

In looking at the ZKOS design we will first examine its general software architecture and the
design patterns used in its implementation. We will then turn to several specific elements of the
ZKOS design: the process manager, the garbage collector, and the design of Input/Output (I/0)
interfaces. We consider these areas in detail because these are areas of higher risk; by focusing on
the issues raised in these areas, we believe that we will address issues raised in other areas of system
software.

4.1 The ZKOS Software Architecture

One goal of any operating system is to protect the “system” code from “user” software and to
segregate the information of one user from that of another. Virtual memory has been the only
hardware tool available to system software designers; it is used to create a separate virtual address
space for each user process. In addition, there is a special “kernel” mode to support system software.
Software running in kernel mode has unlimited privileges and can both read and write any word
of memory. As it turns out, switching context between user and kernel mode is a very expensive

20



operation, involving thousands of cycles. Faced with this cost, operating system engineers have
designed their systems to avoid crossing the user-kernel barrier as much as possible. In practice,
this has meant moving more and more software into the kernel, even when there is no logical need
for that software to have unlimited privilege.

We can see in this two related problems: First, switching level of privilege is expensive; Second,
there are only two levels of privilege. Some hardware, going back to [65], provide several levels
of privilege, arranged in a hierarchy of increasing privilege. While this is an improvement, it still
makes it difficult to make fine grained distinctions about the specific privileges any system software
component actually needs to do its job. Far too many elements of the system end up with far too
many privileges and with the ability to further escalate those privileges with ease. This, in turn,

leads to a design in which a single vulnerability can be exploited to gain unlimited access to system
and user resources.
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Figure 6: Single Kernel, Ring and Compartmented OS Models

The alternative, which we explore in the design of ZKOS, is not to rely on the memory barrier
at all, but rather to use the STA hardware’s notion of compartment and principal in order to
decompose the operating system into a large number of small components each of which has its
own compartment in which it stores its own data. Each component has its own principal under
whose authority it operates. To first order, a component’s principal has exclusive access to its own
data and lacks the privilege to access data of other system components or of user data. When
such access is required, it must be provided for through the explicit use of shared compartments.
Figure 6 illustrates the differences between the three styles of operating system designs.

It is worth noticing, before going into further details, that a compartmentalized system like ZKOS
actually makes no fundamental distinction between operating system and other code. All code is
broken down into modules that have access to data in only a limited number of compartments.
There is no memory barrier or kernel /user distinction. As a result, whatever structuring principles
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are used to guarantee information flow properties of ZKOS can be applied equally well to any other
layer of the software system.

If we consider how application middleware, (e.g. a web-server) is treated in conventional systems,
we can see the clear advantage of the ZKOS approach. A typical web-server implementation manages
a set of threads, one for each client request; however, because memory barrier protection incurs a
huge context switching overhead, web servers intermingle the data of all their clients within a single
address space, foregoing the use of the only protection mechanism afforded by the operating system
and hardware. In ZKOS, the clients of a web server can operate within a common address space,
while still having a strong guarantee of information isolation provided by STA compartments. In
effect, the web server is really another layer of operating system. In ZKOS it can be built in exactly
the same way as the OS and can reap the same protections; in a conventional system, it is a distinct
from the OS (or inappropriately included in the OS) and has far fewer guarantees available to it.

4.1.1 STA Provided Building Blocks

The STA hardware provides a set of hardware supported building blocks with which we can construct
the ZKOS software architecture. These include:

e Data Types: Every word of memory is tagged with its data type. STA provides for a large
space of data types, including the common types (e.g. integer, float, instruction) as well as
a large space of special purpose data types (e.g. Principal, Compartment, Garbage-collector
scan pointer) that are related to the STA hardware architecture.

e Compartments: Every word of memory is tagged with its “compartment”, an aggregation of
objects upon which identical access controls are imposed.

e Principals: A representation of the entity on whose behalf a thread of control executes.

e Access Rules: These are applied on every instruction and regulate which principals are allowed
to perform which instructions on data in which compartments. These are stated in a language
drawing ideas from Domain and Type Enforcement [5] and Role Based Access Control [9, 26,
60] as is done in SELinux [29].

e Gates: These are compound objects, including a procedure, a compartment and a principal.
When a gate is invoked, the principal and compartment are rebound to those in the gate and
the procedure is then invoked. When the procedure returns, the principal and compartment
are restored to those in effect prior to the invocation of the gate.

The STA hardware architecture provides a large tag, capable of referencing a very large space of
compartments for structuring memory, while the processor principal register is capable of referencing
a very large number of principals. Thus, we are free to design the system as if there is an unlimited
number of compartments and principals and to use these to make fine grained distinctions.

Conceptually, there are several types of access rules each related to the category of instructions
to which they apply:

e Instruction compartment rules: Instructions, like other words in memory, belong to a compart-
ment. The first category of access rules controls whether a principal is allowed to execute code
within the compartment. (Instructions themselves are contained within a procedure object,
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which might have a different compartment from that of the instructions within it; in addition,
instructions within a procedure might be in several separate compartments; we haven’t yet
explored whether this offers useful opportunities for enforcing privilege containment).

Procedure Call operations: Procedure call instructions take a reference to a procedure (or
a gate) as well as some ancillary information (see Section 5.7). Procedure-Call access rules
consider the running principal and the compartment of the procedure being invoked. The rule
specifies whether the procedure invocation is permitted.

Basic operations: These rules apply to typical 2 and 3 operand instructions (e.g. Add, Mul-
tiply). They specify whether the operation is legitimate (e.g. Integer add must take 2 integer
operands) and if so what data-type and compartment the result should have.

Load operations: These rules encode who is allowed to read data in which compartments. All
load operations take a base register and offset, and load data into a destination register. The
base register should point to an object in memory and the offset indicates which slot of the
object is to be fetched. Load access rules consider the running principal, the compartment of
referenced object and the compartment of the word being fetched from the referenced slot of
the object. The rule specifies whether the load is allowed and if so, what compartment should
be assigned to the loaded word.

Store operations: These rules encode who is allowed to write data into which compartments.
Similar to the Load instructions, Store instructions take a base register and offset; the third
argument is the write data. Store access rules consider the running principal, the compartment
of the referenced object, the compartment of the data in the slot being overwritten and the
compartment of the write data. The rule specifies whether the store is allowed and if so what
compartment should be assigned to the stored word.

Special purpose instruction: The STA hardware provides for a number of special purpose data
types and instructions in order to allow control over system resources at an appropriate level of
granularity. For example, in the design of the garbage collector (GC), we consider both data-
types and instructions that are intended to be used only by the GC. In the Process-manager,
we provide data types for special data structures holding the processor state and allow these
only to be manipulated by special instructions who use is limited to the Process-manager
principal. Special purpose instructions may be implemented in the micro-architecture of an
STA implementation by trapping to software handlers or they may be directly implemented
in hardware (or microcode). Special purpose instruction rules control what principals are
allowed to access the specific resources manipulated by these special purpose instructions;
these consider the data type and compartments of the operands as well as the running principal
and the specific special purpose instruction.

4.1.2 Using The Building Blocks to Structure ZKOS

This set of building blocks allow us to radically modularize ZKOS, assigning to each software com-
ponent its own private compartment(s) for storing data and code. In addition, each component
has its own principal(s) and a set of access rules that govern the rights other components have to
access the code and data in its compartments. Each component is granted only the least privilege
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[59] necessary to do its job. Usually each OS component has no rights to access data in the com-
partments of other OS components (or in user components) and this is enforced by the hardware
Tag Management Unit. Because the TMU hardware enforces separation between its components,
ZKOS has no need of a virtual memory boundary; instead we allow all software to live in a common
flat address space and provide for global, generational garbage collection [43, 7, 24] as described in
Section 4.4. We note that virtual memory hardware is still provided and can be used when appro-
priate to support isolation of Direct Memory Addressing (DMA) devices or the garbage collector if
desirable.

The core of each ZKOS component is implemented as a set of procedures accessing data within a
common compartment and running under the authority of a single principal. The procedures (and
the instructions within these procedures) of the component are stored in another compartment
reserved for the component’s code. The only principal authorized to run these procedures is that
of the component. This is encoded in procedure and instruction access rules that are enforced by
the STA. This technique is used to guarantee isolation among components.

However, ZKOS components also need to interact and to share information; we want these
interactions to be structured and the sharing of information to be controlled so that no component
is granted privileges beyond those needed to perform its job. To allow components to interact in
such a structured manner, each component establishes a set of “gates” (i.e., packages of a procedure,
a principal and a compartment see Section 5) representing service entry points. Gates are the sole
mechanism through which a thread can change privilege (this is guided by another principle stated
in [59], the principle of economy of mechanism).

The right to invoke a gate is extended (via access rules) only to those other OS (or user)
components that need to invoke the service provided by the gate; this too is enforced by the
STA’s TMU. Typically associated with this gate is a separate compartment and principal. The
compartment is used to hold data shared between the two components. The principal can be
thought of as a “proxy principal” having some of the privileges of both components, but typically,
it is less privileged than either component’s core principal. As the name implies, this principal can
be thought of as a “proxy”; for example, if the Log-Manager creates a gate to mediate service calls
from the Process-Manager, then the principal in the gate can be thought of as the “Log-Manager
acting on behalf of the Process-Manager”. This principal need not have access to the core data of
the Log-Manager; rather it has access to data stored in the shared compartment. The proxy itself,
has access to other gates that allow it to temporarily run as the Log-Manager; but note that while
doing so it does not have access to the data in the shared compartment.

This arrangement allows ZKOS to carefully control what information can flow between compo-
nents. In addition, it decomposes privileges, granting only a limited number to any component.
Thus, a penetration into one component, need not lead to privilege escalation, both because privi-
lege is not organized in a hierarchy and because gaining specific privileges involves penetrating the
specific component owning that privilege.

Just as with interactions among ZKOS components, a ZKOS component (e.g., a Log-manager)
typically needs limited access to user data (or vice versa). These types of limited exchanges are
also effected by creating an additional principal to act as a proxy for the OS component in its
interaction with user; an additional compartment is used to hold the shared information. These
proxy principals and shared compartments are subject to a set of access rules that severely limit the
information flows to just those desired; neither the OS component nor the user gains unintended
privileges. As shown in Figure 7, the user interacts with the OS component (e.g., the log manager)
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Figure 7: Components Interact via Proxy Compartment and Principals

by invoking a gate in a compartment shared by the user and log manager; the gate builds a new
log entry in the shared compartment while temporarily executing as the log manager’s proxy.

While acting as the proxy, the thread is only able to access data in the shared compartment; it
is not able to access information in the user’s compartment nor in the log manager’s compartment.
The log manager itself is then invoked via a gate accessible to the proxy principal (but not the
user’s principal) in order to actually add the entry to the log which is accessible only to the log
manager’s principal. This strictly limits the flow of information as well as the sequence of principal
changes.

The ZKOS design decomposes each OS component into its smallest meaningful pieces, treating
each of these, in turn, as a sub-component and assigning unique compartments, principals and
access rules to each. In the end, each component is surrounded by a set of compartments and
associated principals and gates that allow interactions with other ZKOS components and with user
processes. Thus, each component resembles a planet surrounded by a set of satellites and we often
use the term “hub and satellite” to refer to this design pattern.

We believe that the hub and satellite and similar patterns are amenable to formal analysis;
furthermore, we believe that this formal analysis is much simpler than today’s standard verification
techniques. In particular, to analyze what information flows are allowed (including what information
can be exported, modified or corrupted) one need only analyze the structure of compartments,
principals and access rules. We construct a formally analyzable information-flow graph whose nodes
are compartments and principals and whose arcs are (1) read access rules linking compartments to
principals and (2) write access rules linking principals to compartments.” A similar graph, in which
the nodes are principals and the arcs are gates, encodes the possible transitions of privilege.

SExternal resources (e.g., files, networks, etc.) are also represented as compartments.
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Our goal is then to prove that overall information flow policies are a consequence of the structure
of these graphs, in particular of the reachability relationships within the graph structure. Reacha-
bility in these graphs sets an upper bound on the possible information flows in the system. If these
flows are consistent with the policies one wants to enforce then one need never examine the code
to formally guarantee the policies since the code cannot effect any information flow not sanctioned
by the access rules. If we cannot establish the desired verification results, then one option is to fur-
ther modularize the system, creating more compartments, principals, and access rules to explicitly
represent distinctions of privilege and limitations of information and control flows.

ZKOS, supported by the STA hardware, in contrast to kernel-oriented systems, provides OS
components a strong guarantee not only that their integrity cannot be compromised by user code,
but also that their integrity cannot be compromised by other OS components. These guarantees
are symmetric, application middleware and user code are similarly guaranteed that compromised
system code cannot compromise their integrity, because system components lack the privilege to
access user data and code.

This is part of the overall “defense in depth” strategy of ZKOS. The hardware provides grounding
for the fundamental integrity of the system. It also provides strong controls on information flow
by propagating the compartment labels of all data and restricting the flow of information between
compartments (this draws on a common philosophy shared with [78, 48, 74] among others).

Components are also designed to be mutually suspicious, checking the arguments and return
values passed between them for reasonableness and subjecting the overall information and control
flow to checks by a reference monitor that is driven by an architectural model of the system [68, 67],
(see Section 7.2).

In summary, ZKOS components are decomposed into the smallest meaningful units whose in-
teractions and privileges are highly constrained. The information flows among ZKOS components
are governed by a set of declarative access rules that are open to formal analysis. Moreover, the
tools used to structure the OS (e.g., compartments, principals, access rules and gates) are equally
available to application middleware and user software. In all cases, the hardware guarantees that
the software cannot violate the access rules.

4.2 An Example of the ZKOS Architecture

In the next several sections we will delve into increasing details of the ZKOS architecture and
implementation. In this section we will look at how a few key ZKOS components (e.g. the Log-
manager, Login-manager, Process-manager) interact with one another and with user processes. We
will also examine aspects of how the system bootstraps itself. We will then turn to a more detailed
look at three key ZKOS components: The Process-manager, the Garbage Collector, and the 1/O
interfaces. As mentioned earlier, we chose these three components because they seemingly require
global access to information and therefore pose the most likely source of vulnerabilities leading to
unintended information flows. By focusing on these components, we feel that we can show that even
the areas of highest risk are amenable to designs satisfying the criteria of least privilege, complete
mediation, and separation of privilege.

Using the techniques describe in Section 7.3.1 we have implemented several core components of
ZKOS. Each of these follows the hub and satellite pattern: As illustrated in Figure 8, there is a core
compartment and principal for each component surrounded by compartments and principals for each
entity with which the component interacts. Gates are used to allow clients of the core components
to change (not necessarily escalate) their privileges in order to interact with the component.
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Figure 8: Components Interact via Shared Compartments, Proxy Principals and Gates

4.2.1 The Log Manager

The Log-manager offers a good example of the issues that need to be addressed. The Log-manager
collects data (log entries) from every ZKOS component as well as from every user process; it also
maintains a core data structure (the log) which must be kept from serving as a vehicle for unintended
information flows (e.g. one user’s log entries being read by another user).

The task of the Log-manager is to accept a stream of events signaled by ZKOS components,
user code, and by the ZKOS application infrastructure described in Section 7 (these manage access
control, execution monitoring and information flow tracking). Events are turned into log records
describing what happened as well as the dependencies between events; each record is annotated
with a time-stamp as well as the thread that signaled the event and the current principal of the
signaling thread. The Log-manager builds log-entries, adds them to the log, commits the records to
persistent storage and makes the records available for information retrieval and browsing as shown
in Figure 9.

ZKOS
Component

Log
Browser

Log

Encrypted

Figure 9: The Log-Manager

The Log-manager accepts information from a variety of sources, both user and ZKOS com-
ponents, and it makes this information available to a variety of clients including users, system
administrators, and forensic investigators (e.g. law enforcement, security specialists). The concern
is that, without careful design, the Log-manager could easily become a vehicle for unintended infor-
mation flow. We do not want the Log-manager to have unlimited access to user data (as it would
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in a kernel based system) nor do we want users to have unintended access to information controlled
by the Log-manager.

To address these concerns, we decompose the overall log system into a set of sub-components:
The core component that collects log entries from clients (the log builder), the core component
that browses log records (the browser), and the satellite record-builder components used to collect
event data from each client. We will not focus particularly on the log browser, except to note that
preserving the provenance of each log record and the dependencies between them allows us to build
a flexible set of access rules, managing the tradeoffs between the system administrators’ needs to
gather forensic and management information and user’s desire to maintain privacy.

We now analyze what privileges are necessary for each component to do its job. (Consider
Figure 10 which illustrates the interaction between the user Login-manager and the Log-Manager).
First, we note that the log-builder component has no need to actually read the records. It’s job is
simply to add the records to the log data-structures and then to commit the records to persistent
storage; this second step is accomplished by invoking the 1/O system that will be described in
Section 4.5. Thus, the log-builder only needs the ability to write a log record into the log data
structure.

Login-Manager Record Builder Satellite Log-Manager
/'_ Ty

Grant of Gate
Access

Figure 10: User Manager Interacts with Log-Manager Via Satellites

Now let us consider the issue of building a log record. The “record-builder” that does this needs
the ability to create a log record and to add the client’s event data to this record. It has no need to
read other client data. We, therefore, create a satellite compartment and principal for the task of
creating the log record and filling in the user’s event data. This record-builder satellite is accessed
through a gate (for the Make-Entry procedure) to which only the client has call permission and
to which the event data is passed as arguments. The gate changes principal and compartment to
that of the satellite record-builder; only its principal can allocate or modify data in the satellite’s
compartment. The record-builder satellite allocates the record, and fills in the data provided by
the client (as arguments passed to the gate) as well as the timestamp, thread and principal; the
management of this data is reserved for the record-builder in order to avoid the possibility of the
client spoofing the log system. The record-builder satellite, however, cannot actually add the record
to the log, because it lacks write access to the log. However, the satellite is provided with a gate (for
the Add-Entry procedure) to which it has call access; this gate changes principal and compartment
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to that of the “log-builder”. The satellite invokes this gate, passing it the new log record as an
argument.

Analysis of this architecture shows that the client of the Log-manager has no ability to modify
the log (other than to request the addition of a new record), the Log-manager cannot access data
other than that provided to it through the request to create a new record. Finally, the only thing
the Log-manager can do with the data passed to it is to create a record and add it to the log; no
other information flow is allowed.

4.2.2 Bootstrapping ZKOS Components

The brief discussion of the log-manager above illustrates how ZKOS manages information flow
by 1) Decomposing its components into smaller components with limited capabilities and limited
requirements for information access and 2) Granting to each of these the least privileges actually
required. The structure of compartments and principals is non-hierarchical; each principal plays a
particular role and has only those privileges it actually needs. The flow through a particular service
consists of a series of transitions or privileges mediated by gates.

This architecture requires the various ZKOS components to construct a set of satellites consist-
ing of principals, compartments and gates that allows interacting components to communicate. In
addition, those ZKOS components that provide services directly to user processes must also con-
struct satellites dynamically linking themselves to the users’ processes as users log into the system.
To see how this works, we’ll consider how a ZKOS component such as the Log-Manager initiates
its interactions with the user Login-Manager.

Registers itself and its Satellite
Builder at Bootstrap Time

Process Manager

Satellite
Builder

1 Invokes satellite .
Builder when new
user is logged in

Registers process
manager
& satellite builder

Figure 11: A Component Registers Itself with The User Manager

Creates Private
Compartment and
Principal

The simpler part of the bootstrap involves creating the satellites linking ZKOS components.
To do this, each component creates a compartment and principal for each of the other ZKOS
components to which it wishes to provide services. Each entry point of the component is then
packaged as a gate which is registered with the client component during a linkage step performed
after all components are loaded. For example, the Log-Manager creates a gate for the Make-Entry
service and this is passed to the Login-manager (so that new user log in events can be logged).
To enable the registration, each component (e.g. the Login-manager) provides a “register-service”
entry point (i.e. a gate that adds the Log-manager’s entry-point to the Login-manager’s service
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registry after shifting to the Login-manager’s principal and compartment). All ZKOS components
are provided call access to the register-service gate.

The process for dynamically linking user processes to ZKOS services is a bit more complex.
Unlike the linkage between system components, this linkage must be performed whenever a new
user process is created. Consider how a new process would be enabled to make log entries. This
would require the Log-manager to create appropriate principals, compartments, and gates for the
new user process when the user process is launched. At system bootstrap time, the Log-manager
creates a gate which it registers with the Login-manager. This is not the gate discussed above,
but rather another one that will be called later whenever a new user process is created; it will be
passed this new process as an argument. This is registered in a second registry managed by the
Login-manager as illustrated in Figure 11.

When a new user is logged in and its process is launched (through interaction with the Process-
manager), the Login-Manager consults this second registry, invoking each of the registered gates in
turn. Fach of these gates transitions to the principal of its ZKOS component and then creates a new
satellite structure linking the new user process to the ZKOS component. This satellite structure is
passed back to the Login-Manager and bound in the global environment of the user process (through
interaction with the Process-manager). At the end of this process, the new user has a set of service
entry points to each of the relevant ZKOS components. Each of these entry points is mediated by
a gate that transitions into a satellite compartment and principal private to that user and linking
the user process to the ZKOS component.

Process Log
Manager Manager

Satellite Satellite
Builder Builder

User
Log in Thread
reguest  Environment

== =

Figure 12: Starting A User Process

4.3 The Process-Manager

In this section we consider the Process-manager, the first of three “difficult” core components of
ZKOS (the process-manager, the garbage-collector and the I/O system). The Process-manager (of-
ten termed the scheduler in many operating systems) is responsible for initiating and terminating
user processes. In addition, it manages the division of processor time among separate threads of
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control®. In a conventional OS, the Process-manager executes within the kernel with unlimited
privilege. There are several motivations for this: First, the scheduler clearly needs to be protected
from accidental or intentional abuse from user code. Since it controls the allocation of system re-
sources to processes, subversion of the Process-manager is tantamount to complete subversion of
the system. Second, the Process-manager typically is responsible for saving and restoring the archi-
tectural state of the processor during process switches and this often involves the use of privileged
instructions that are available only in the kernel mode of the processor. Finally, information used
by the scheduler is sometimes stored within the user’s address space, requiring the scheduler to
have access to user memory.

As with the other ZKOS components we will consider, the Process-manager is a “globally”
oriented facility; it’s job is primarily the management of processor resources and time as a whole,
rather than the rendering of services to individual processes. It, therefore, raises concerns about
whether it can accidentally or through subversion become the vehicle for unintended information
flows.

As we did with the Log-manager (and will do with the GC and I/O facilities) the first step in
the design of the ZKOS Process-manager is a decomposition of its task into distinct sub-tasks each
of which requires limited privileges. The key tasks fall into three categories:

e Allocation of processor time
e Saving and Restoring processor state during process switches

e Initiation, suspension, resumption and termination of processes.

Performing the first of these tasks clearly does not require the Process-manager to have access
to any user data at all. In fact, all that is required is for the Process-manager to manage a data-
structure keeping track of the system resources used by each process. This includes processor time,
which the Process-manager can track by itself as it handles timer interrupts, which cause a process
to relinquish the processor. Keeping track of other resource usage involves communication with
user ZKOS components such as the I/O manager; again this requires no access to user data and is
mediated by the satellite architecture described earlier in this section.

The second task, saving and restoring processor state, also need not involve unlimited access to
user information. In fact, since we are co-designing the STA hardware with the ZKOS system, we
can provide special capabilities for storing and restoring processor state that are distinct from the
normal load/store instructions.

The third group really is just a collection of system services invoked using satellite compartments,
principals, and gates as we've described above.

This leads to a hub and satellite architecture for the Process-manager in which the core manages
the private data structures of the Process-manager, including resource consumption tables and
scheduling queues. Conceptually, the part of this core that computes priorities and the like can run
in a separate thread; this is particularly useful if the ZKOS system is supported by a multi-processor
STA system.

6Unlike many systems that make a distinction between processes and threads, we will use the terms interchange-
ably. In many operating systems a process has a separate address space and a collection of threads that execute
within that address space. However, in ZKOS there is a single, flat address space, making the distinction irrelevant
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Figure 13: The Process-Manager’s Data-Structures

Associated with each thread is a satellite compartment used to hold data particular to that
thread. This includes a “processor-state” structure used to hold the suspended state of the thread,
including the thread’s current principal, compartment, procedure base, and the PC at which the
thread should resume execution. In addition, this structure holds the other special registers (call-
frame, locals-frame, return-frame etc. see Section 5.7) and general-purpose registers.

This structure has a unique data-type (Processor-state); associated with it are two special
instructions: Store-processor-state and Restore-processor-state. ZKOS access rules restrict these
instructions to principals associated with the Process-manager; in particular, the only sanctioned
use of these instructions is by the satellite principal on Processor-state structures and only on those
within the satellite compartment. There is one additional processor register, the Current-thread
register, whose value is not stored in these structures.

The Restore-processor-state instruction takes a reference to a thread’s Processor-state structure;
it sets the Current-thread register to this value and then restores the other process registers from
the referenced Processor-state structure. In effect, the process-state structure acts like an extended
Call-frame (see Section 5.7) to which control is returned and from which the processor state is
restored. After execution of the Restore-processor-state instruction the resumed thread is in control
of the processor. The Save-processor-state instruction is the dual of the Restore-processor-state
instruction; it saves the processor’s registers in the Processor-state structure pointed at by the
Current-thread register.

The Process-manager itself executes as a thread. In fact, it is to this thread that control
passes when a timer interrupt is fielded. Thus, within the Process-manager compartment there is
another such Processor-state structure, reserved for access by the Process-manager’s core principal.
Another processor register (Process-manager-thread) points to this structure; it is initialized during
the bootstrap of the Process-manager.
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Timer interrupts are affected by forcing a Swap-process-state instruction to be executed (which
stores the state in the Processor-state structure of the current thread) and then transfers control to
the Process-manager core by setting the processor’s state to that stored in the Process-manager’s
Processor-state structure.

Normal load/store instructions are not allowed on Process-state data structures. This together
with the fact that Principals associated the Process-manager do have access to data in the user’s
compartments means that there is no opportunity for inadvertently moving information in unin-
tended ways through the Process-manager. Thus, by taking advantage of our ability to co-design
the STA hardware with the ZKOS system we can provide strong guarantees on the permitted
information flows.

In order to manage the allocation of processor resources, the Process-manager maintains a variety
of tables summarizing the recent and cumulative resource consumption of each thread. These tables
are held in the Process-manager’s core compartment and are inaccessible to other principals. As
mentioned earlier, the information necessary to keep these tables current comes from two sources:
The first is the processor timer register, to which the Process-manager has access; the second is
provided by calls from the I/O manager using gates (like those describe above) to mediate the
inter-component calls.

ZKOS provides for inter-process communication through cross thread calls. These are managed
nearly identically to normal calls (see Section 5.7); a call-frame holding the arguments of the call is
constructed. But rather than making the call immediately, the call-frame and the other arguments
to the Call instruction are entered in a queue held in the callee thread’s satellite compartment.
These queues are shown in Figure 13. The calling thread is enabled to make an entry in this queue
through the use of a gate provided by the callee thread; this gate switches to the principal and
compartment of the callee thread, queues the call and then returns. All threads are responsible for
polling the request queue periodically.

Since the Process-manager itself has an associated thread, normal user code can make queued
cross-thread calls to the Process-manager in order to invoke a variety of services. This includes
requests to suspend execution until some condition occurs, requests to create a new thread, requests
to terminate execution, etc. The process manager queues these requests as they are made. Whenever
the Process-manager thread gains control it first updates its tables, then it empties the request
queue; next it polls an internal queue of threads that have suspended execution until a specific
time, moving those that have reached their target time into the queue of threads waiting for the
processor. Finally, the Process-manager picks the next thread waiting for the processor and transfer
control to it.
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4.4 Least Privilege Garbage Collection

The second “difficult” area of system software that we investigate in this section is that of global
“garbage collection”.

Can we provide automatic management of dynamic memory without a single, privileged domain
that can arbitrarily read and rewrite data? In particular, can we decompose memory management
into multiple tasks, and minimize the privileges required by each task so that no task, even if
subverted, provides a vector to compromise the integrity of the system? What hardware support
would be necessary to dynamically enforce this identified least privilege operation?

To address these questions, and to illustrate the kind of service decomposition and least-
privilege compartmentalization enabled by STA, we consider the design of a simple garbage collector.
Garbage collected systems remove the error-prone burden of manual memory management from the
programmer, in the process eliminating a class of dangling pointer bugs that can be exploited to
breach a system. The garbage collector is a global operation that must touch and rewrite all of
memory. As such, it is a service that could end up with global privileges and present a single-point
of failure for a security system.

Nonetheless, with careful design, it appears possible to limit the privilege of the garbage collector
so that it does not need privileges to arbitrarily change memory. Even if one of the decomposed
processes associated with the garbage collector is arbitrarily subverted, the process does not have
adequate privilege to compromise the system integrity (read data, change data or structures). The
compromised garbage collector may cease to reclaim memory, leading to fail-stop behavior.

The resulting garbage collector design is very different from conventional operating system
servers. This radically different design is enabled by the STA hardware. This example illustrates
how STA changes the rules for system software construction, allowing radical fine-grained service
compartmentalization without compromising performance.

4.4.1 Note on Design Approach

We could simply put the garbage collector in one domain, give that domain global read/write
privileges, and argue or prove that it is correct and bug free. However, we have a long history of
software bugs in critical routines that provide vectors for system subversion.

Instead, we are considering a defense in depth approach that provides not just one, but multiple,
overlapping barriers to breach. Each barrier should be simple and demonstrable and should be ade-
quate to maintain integrity. Nonetheless, even if the “impossible” happens and a single mechanism
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